Model describing propagation of new technologies

1. Henkin - Polterovich's model

Levels of efficiency n = 0, 1, ...

 $F_n(t)$ - the fraction of the firms which have efficiency level n or less at time $t \in [0, \infty)$. For each t the sequence $F = \{F_n(t)\}$ is a distribution function and the model describes its evolution in time. It is assumed that this evolution satisfies the following rules:

- The efficiency can only improve in time.
- The firms cannot jump over levels: if a firm has a level n then it may transit to the level n + 1 only.
- The speed of transition is a sum of two components: innovation and imitation components.

$$\frac{dF_{n}(t)}{dt} = -(\alpha + \beta(1 - F_{n}(t))(F_{n}(t) - F_{n-1}(t))), \ \alpha, \beta > 0.(1)$$

 $\alpha(F_{n-1} - F_n)$ - innovation component;

$$\beta(1 - F_n)(F_{n-1} - F_n)$$
 - imitation component.

Initial conditions:

$$0 < F_n(0) \le F_{n+1}(0) < 1, n < N-1, F_n(0) = 1, n \ge N.$$
 (1')

Boundary conditions: $F_0(t) = 0$ for all $t \ge 0$. (1")

Let us denote

$$\begin{split} \textbf{B}(t) &= \prod_{k=1}^{\infty} \left(1 + \frac{\beta}{\alpha} (1 - \textbf{F}_{k}(t))\right), \\ \textbf{F}_{n}^{*}(t, \textbf{A}) &= \left(1 + e^{-(\textbf{n} - \textbf{c}(t + \tau))}\right)^{-1}, \\ \textbf{where} \quad \textbf{c} &= \frac{\beta}{\text{In} \left(\frac{\alpha + \beta}{\alpha}\right)}, \quad \tau = \frac{\text{In} \, \textbf{A}}{\beta}. \end{split}$$

Theorem (Henkin G.M., Polterovich V.M.).

Let F_n , $1 \le n < \infty$, be a solution of the problem (1), (1'),(1''). If we define A = B(0) then the following estimation is valid

$$\left|\mathsf{F}_{\mathsf{n}}(\mathsf{t}) - \mathsf{F}_{\mathsf{n}}^{*}(\mathsf{t},\mathsf{A})\right| \leq \lambda \mathsf{e}^{-\gamma \mathsf{t}}, \ 1 \leq \mathsf{n} < \infty, \ \ \mathsf{t} \geq \mathsf{T}_{\mathsf{0}},$$

where λ , T_0 , γ are constants depending on α , β , B(0), N.

$$\frac{dF_n(t)}{dt} = -\phi(F_n(t))(F_n(t) - F_{n-1}(t))$$

2.Modification of Henkin - Polterovich's model

 $\frac{model}{\beta(F_n-F_{n+1})\!(F_n-F_{n-1})} \text{--- new imitation component}$

$$\frac{dF_{n}(t)}{dt} = -(\alpha + \beta(F_{n+1}(t) - F_{n}(t))(F_{n}(t) - F_{n-1}(t))). (2)$$

Let $\alpha = 0$. A change of variables

$$\tau = \beta t, c_n(t) = F_{N+1-n}(t) - F_{N-n}(t)$$

leads to Langmuir's lattice

$$\begin{cases} \frac{dc_{1}}{dt} = c_{1}c_{2}, \\ \frac{dc_{n}}{dt} = c_{n}(c_{n+1} - c_{n-1}), & n = 2,..., N - 1 \\ \frac{dc_{N}}{dt} = -c_{N}c_{N-1}, \\ c_{n}(0) = \gamma_{n} > 0, & n = 1,..., N \end{cases}$$

$$(4)$$

3. Investigation of Langmuir's lattice

The stable stationary solutions to (4) have the following structure

$$(y_1,0,y_2,0,...,y_k,0)$$
 if $N=2k$, $(y_1,0,y_2,0,...,y_k,0,y_{k+1})$ if $N=2k+1$. The necessary condition for stability is

$$y_1 \ge y_2 \ge ... \ge y_k (\ge y_{k+1}) \ge 0.$$

J.Moser proved that if $c_1(t)$,..., $c_N(t)$ is the solution to (4) then the eigenvalues of the Jacobi matrix

$$L(t) = \begin{pmatrix} 0 & \sqrt{c_1(t)} & & & & \\ \sqrt{c_1(t)} & 0 & \sqrt{c_2(t)} & & & O \\ & \sqrt{c_2(t)} & 0 & & & \\ O & & \ddots & 0 & \sqrt{c_N(t)} \\ & & & \sqrt{c_N(t)} & 0 \end{pmatrix} (5)$$

don't depend on t and are different from each other. If N is even then eigenvalues of the Jacobi matrix have the structure

$$-\lambda_{1} < -\lambda_{2} < \dots < -\lambda_{\frac{N+1}{2}} < \lambda_{\frac{N+1}{2}} < \dots < \lambda_{2} < \lambda_{1},$$

if N is odd then the eigenvalues have the structure $-\lambda_{1} < -\lambda_{2} < ... < -\lambda_{\frac{N}{2}} < 0 < \lambda_{\frac{N}{2}} < ... < \lambda_{2} < \lambda_{1}.$

The solution to (4) can be calculated analytically from the following formula proved by J.Moser

$$\frac{1}{z - \frac{c_1(t)}{z - \frac{c_2(t)}{z - \cdots}}} = \frac{\sum_{n=0}^{N} \frac{m_n e^{\lambda_n^2 t}}{z - \lambda_n}}{\sum_{n=0}^{N} m_n e^{\lambda_n^2 t}}$$

$$\vdots$$

$$\frac{c_N(t)}{z - \frac{c_N(t)}{z - \cdots}}$$

Theorem (Tashlitskaya Y.M., Shananin A.A.). Solutions to the Couchy problem (4) for Lengmure's finite lattice converges as $t \to \infty$ to a fixed point, which is determined uniquely by initial data. Moreover, the following relations define the character of convergence

(6)

 $c_{2k-1}(t) = \lambda_k^2 + O(e^{-vt}), c_{2k}(t) = O(e^{(\lambda_{k+1}^2 - \lambda_k^2)t}), k = 1,..., n-1.$ Here $n = \left\lceil \frac{N}{2} \right\rceil + 1$ is a number of different nonzero eigenvalues $\lambda_1^2 > \lambda_2^2 > ... > \lambda_n^2 > 0$ of Jacobi matrix (5), which are determined by initial data:

$$\frac{1}{\nu\beta} << t << \frac{1}{\alpha}.$$

 $v = \min \{ \lambda_k^2 - \lambda_{k+1}^2 | k = 1, ..., n-1 \} > 0.$